skip to main content


Search for: All records

Creators/Authors contains: "Guenthner, William R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origin of the phenomenon known as the Great Unconformity has been a fundamental yet unresolved problem in the geosciences for over a century. Recent hypotheses advocate either global continental exhumation averaging 3 to 5 km during Cryogenian (717 to 635 Ma) snowball Earth glaciations or, alternatively, diachronous episodic exhumation throughout the Neoproterozoic (1,000 to 540 Ma) due to plate tectonic reorganization from supercontinent assembly and breakup. To test these hypotheses, the temporal patterns of Neoproterozoic thermal histories were evaluated for four North American locations using previously published medium- to low-temperature thermochronology and geologic information. We present inverse time–temperature simulations within a Bayesian modeling framework that record a consistent signal of relatively rapid, high-magnitude cooling of ∼120 to 200 ° C interpreted as erosional exhumation of upper crustal basement during the Cryogenian. These models imply widespread, synchronous cooling consistent with at least ∼3 to 5 km of unroofing during snowball Earth glaciations, but also demonstrate that plate tectonic drivers, with the potential to cause both exhumation and burial, may have significantly influenced the thermal history in regions that were undergoing deformation concomitant with glaciation. In the cratonic interior, however, glaciation remains the only plausible mechanism that satisfies the required timing, magnitude, and broad spatial pattern of continental erosion revealed by our thermochronological inversions. To obtain a full picture of the extent and synchroneity of such erosional exhumation, studies on stable cratonic crust below the Great Unconformity must be repeated on all continents. 
    more » « less
  2. Abstract Our study used zircon (U-Th)/He (ZHe) thermochronology to resolve cooling events of Precambrian basement below the Great Unconformity surface in the eastern Grand Canyon, United States. We combined new ZHe data with previous thermochronometric results to model the <250 °C thermal history of Precambrian basement over the past >1 Ga. Inverse models of ZHe date-effective uranium (eU) concentration, a relative measure of radiation damage that influences closure temperature, utilize He diffusion and damage annealing and suggest that the main phase of Precambrian cooling to <200 °C was between 1300 and 1250 Ma. This result agrees with mica and potassium feldspar 40Ar/39Ar thermochronology showing rapid post–1400 Ma cooling, and both are consistent with the 1255 Ma depositional age for the Unkar Group. At the young end of the timescale, our data and models are also highly sensitive to late-stage reheating due to burial beneath ∼3–4 km of Phanerozoic strata prior to ca. 60 Ma; models that best match observed date-eU trends show maximum temperatures of 140–160 °C, in agreement with apatite (U-Th)/He and fission-track data. Inverse models also support multi-stage Cenozoic cooling, with post–20 Ma cooling from ∼80 to 20 °C reflecting partial carving of the eastern Grand Canyon, and late rapid cooling indicated by 3–7 Ma ZHe dates over a wide range of high eU. Our ZHe data resolve major basement exhumation below the Great Unconformity during the Mesoproterozoic (1300–1250 Ma), and “young” (20–0 Ma) carving of Grand Canyon, but show little sensitivity to Neoproterozoic and Cambrian basement unroofing components of the composite Great Unconformity. 
    more » « less
  3. Wöfler, Andreas (Ed.)
    Abstract Classically held mechanisms for removing mountain topography (e.g., erosion and gravitational collapse) require 10-100 Myr or more to completely remove tectonically generated relief. Here, we propose that mountain ranges can be completely and rapidly (<2 Myr) removed by a migrating hotspot. In western North America, multiple mountain ranges, including the Teton Range, terminate at the boundary with the relatively low relief track of the Yellowstone hotspot. This abrupt transition leads to a previously untested hypothesis that preexisting mountainous topography along the track has been erased. We integrate thermochronologic data collected from the footwall of the Teton fault with flexural-kinematic modeling and length-displacement scaling to show that the paleo-Teton fault and associated Teton Range was much longer (min. original length 190-210 km) than the present topographic expression of the range front (~65 km) and extended across the modern-day Yellowstone hotspot track. These analyses also indicate that the majority of fault displacement (min. 11.4-12.6 km) and the associated footwall mountain range growth had accumulated prior to Yellowstone encroachment at ~2 Ma, leading us to interpret that eastward migration of the Yellowstone hotspot relative to stable North America led to removal of the paleo-Teton mountain topography via posteruptive collapse of the range following multiple supercaldera (VEI 8) eruptions from 2.0 Ma to 600 ka and/or an isostatic collapse response, similar to ranges north of the Snake River plain. While this extremely rapid removal of mountain ranges and adjoining basins is probably relatively infrequent in the geologic record, it has important implications for continental physiography and topography over very short time spans. 
    more » « less
  4. Abstract

    Archean rocks exposed in the Beartooth Mountains, Montana and Wyoming, have experienced a complex >2.5 Gyr thermal history related to the long‐term geodynamic evolution of Laurentia. We constrain this history using “deep‐time” thermochronology, reporting zircon U‐Pb, biotite40Ar/39Ar, and zircon and apatite [U‐Th(‐Sm)]/He results from three transects across the basement‐core of the range. Our central transect yielded a zircon U‐Pb concordia age of 2,805.6 ± 6.4 Ma. Biotite40Ar/39Ar plateau ages from western samples are ≤1,775 ± 27 Ma, while those from samples further east are ≥2,263 ± 76 Ma. Zircon (U‐Th)/He dates span 686.4 ± 11.9 to 13.5 ± 0.3 Ma and show a negative relationship with effective uranium—a proxy for radiation damage. Apatite (U‐Th)/He dates are 109.2 ± 23.9 to 43.6 ± 1.9 Ma and correlate with sample elevation. Multi‐chronometer Bayesian time‐temperature inversions suggest: (a) Cooling between ∼1.90 and ∼1.80 Ga, likely related to Big Sky orogeny thermal effects; (b) Reheating between ∼1.80 Ga and ∼1.35 Ga consistent with Mesoproterozoic burial; (c) Cooling to ≤100°C between Mesoproterozoic and early Paleozoic time, likely reflecting continental erosion; (d) Variable Paleozoic–Jurassic cooling, possibly related to Paleozoic tectonism and/or low eustatic sea level; (e) Rapid Cretaceous–Paleocene cooling, preceding accepted proxies for flat‐slab subduction; (f) Eocene–Miocene reheating consistent with reburial by Cenozoic volcanics and/or sediments; (g) Post‐20 Ma cooling consistent with Neogene development of topographic relief. Our results emphasize the utility of multi‐chronometer thermochronology in recovering complex, non‐monotonic multi‐billion‐year thermal histories.

     
    more » « less
  5. Abstract The Great Unconformity of the Rocky Mountain region (western North America), where Precambrian crystalline basement is nonconformably overlain by Phanerozoic strata, represents the removal of as much as 1.5 b.y. of rock record during 10-km-scale basement exhumation. We evaluate the timing of exhumation of basement rocks at five locations by combining geologic data with multiple thermochronometers. 40Ar/39Ar K-feldspar multi-diffusion domain (MDD) modeling indicates regional multi-stage basement cooling from 275 to 150 °C occurred at 1250–1100 Ma and/or 1000–700 Ma. Zircon (U-Th)/He (ZHe) dates from the Rocky Mountains range from 20 to 864 Ma, and independent forward modeling of ZHe data is also most consistent with multi-stage cooling. ZHe inverse models at five locations, combined with K-feldspar MDD and sample-specific geochronologic and/or thermochronologic constraints, document multiple pulses of basement cooling from 250 °C to surface temperatures with a major regional basement exhumation event 1300–900 Ma, limited cooling in some samples during the 770–570 Ma breakup of Rodinia and/or the 717–635 Ma snowball Earth, and ca. 300 Ma Ancestral Rocky Mountains cooling. These data argue for a tectonic control on basement exhumation leading up to formation of the Precambrian-Cambrian Great Unconformity and document the formation of composite erosional surfaces developed by faulting and differential uplift. 
    more » « less
  6. Abstract

    Radiation damage exerts a fundamental control on He diffusion in zircon, which manifests as correlations between (U‐Th)/He date and effective uranium concentration. These correlations can be exploited with modeling to explore long‐term thermal histories. This manuscript focuses on one such model, the zircon radiation damage accumulation and annealing model (ZRDAAM) of Guenthner et al. (2013), https://doi.org/10.2475/03.2013.01, by integrating newly defined alpha damage annealing kinetics measured by Ginster et al. (2019), https://doi.org/10.1016/j.gca.2019.01.033, into ZRDAAM. I explore several consequences of this alpha damage annealing model as it relates to (U‐Th)/He date‐effective uranium (eU) correlations, using representative time‐temperature paths and previously published results. Comparison between the current version of ZRDAAM, which uses fission track annealing, and the new annealing model demonstrates that, for thermal histories with prolonged periods at low temperatures (<50°C), alpha dose annealing kinetics yield slightly younger model dates at low to moderate eU concentrations, older dates at moderate to high eU, and substantially younger dates at the highest eU concentrations. The absolute eU concentrations over which the differences are observed varies for a given thermal history, so these ranges should be interpreted as relative or proportional. Younger model dates at high eU in most thermal histories result from lower amounts of annealing that occur with the Ginster et al. (2019) alpha dose annealing kinetics. This annealing model comparison illustrates that the choice of annealing kinetics has the greatest influence over model output for thermal histories involving either prolonged time periods in the 200–300°C temperature window, or a late‐stage reheating event.

     
    more » « less
  7. null (Ed.)